Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation.
نویسندگان
چکیده
Arginine-glycine-aspartic acid (RGD) peptides preferentially bind to alphavbeta3 integrin, an integrin expressed on newly formed endothelial cells and on various tumor cells. When labeled with beta-emitting radionuclides, these peptides can be used for peptide-receptor radionuclide therapy of malignant tumors. These studies aimed to investigate whether tumor targeting and tumor therapy could be optimized by dose fractionation. The RGD-peptide DOTA-E-[c(RGDfK)]2 was labeled with 111In for biodistribution experiments and with 90Y for therapy experiments. In mice with NIH:OVCAR-3 ovarian carcinoma xenografts, optimal tumor uptake was obtained at peptide doses up to 1.0 microg (4.8 %ID/g). A peptide dose of 5 microg, required to administer the maximum tolerable dose (MTD) 90Y-DOTA-E-[c(RGDfK)]2, was administered as 5 portions of 1.0 microg. Tumor uptake of the fifth portion was significantly higher than that of the single 5.0 microg portion (3.3 %ID/g versus 2.1 %ID/g). The therapeutic efficacy of 37 MBq 90Y-DOTA-E-[c(RGDfK)]2 (1 x 5.0 microg) was compared with that of 37 MBq administered in five equal portions (5 x 1.0 microg). No difference in tumor growth between the fractionated and the nonfractionated therapy was observed. In conclusion, dose fractionation resulted in higher radiation doses. However, therapeutic efficacy of the radiolabeled peptide was not significantly improved by dose fractionation.
منابع مشابه
Preparation and Bioevaluation of DOTA-Cyclic RGD Peptide Dimer Labeled with 68Ga
Radiolabeled cyclic RGD peptides targeting integrin αvβ3 are reported as promising agents for the early diagnosis of metastatic tumors. With an aim to improve tumor uptake and retention of the peptide, cyclic RGD peptide dimer E[c (RGDfK)] 2 (E = Glutamic acid, f = phenyl alanine, K = lysine) coupled to the bifunctional chelator DOTA was custom synthesized and radiolabelled with Ga. Radiolabell...
متن کاملTumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model.
The alpha(v)beta(3) integrin is expressed on proliferating endothelial cells such as those present in growing tumors, as well as on tumor cells of various origin. Tumor-induced angiogenesis can be blocked in vivo by antagonizing the alpha(v)beta(3) integrin with small peptides containing the Arg-Gly-Asp (RGD) amino acid sequence. This tripeptidic sequence, naturally present in extracellular mat...
متن کاملIntegrin Binding Peptides in a Nude Mouse Model
The v 3 integrin is expressed on proliferating endothelial cells such as those present in growing tumors, as well as on tumor cells of various origin. Tumor-induced angiogenesis can be blocked in vivo by antagonizing the v 3 integrin with small peptides containing the Arg-Gly-Asp (RGD) amino acid sequence. This tripeptidic sequence, naturally present in extracellular matrix proteins, is the pri...
متن کاملChemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(V) beta(3) in a preclinical tumor model.
Angiogenesis plays a central role in tumor growth and metastasis. Quantification or evaluation of angiogenesis is crucial for antiangiogenic therapeutic strategies. Since integrin alpha(v)beta(3) overexpression appears specific of angiogenesis at the adult stage, it became a target of choice over the past decade, and labeled RGD-based compounds, therefore, constitute promising agents for noninv...
متن کاملInfluence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles
PURPOSE Liposomes have been proposed to be a means of selectively targeting cancer sites for diagnostic and therapeutic applications. The focus of this work was the evaluation of radiolabeled PEGylated liposomes derivatized with varying amounts of a cyclic arginyl-glycyl-aspartic acid (RGD) peptide. RGD peptides are known to bind to α(v)β(3) integrin receptors overexpressed during tumor-induced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer biotherapy & radiopharmaceuticals
دوره 19 4 شماره
صفحات -
تاریخ انتشار 2004